
Combining Generational and Conservative Garbage

Collection: Framework and Implementations

Alan Demers
Mark Weiser
Barry Hayes
Hans Boehm

Daniel Bobrow
Scott Shenker

Xerox Palo Alto Research Center
Palo Alto, Ca 94304

SUMMARY

Two key ideas in garbage collection are generational
collection and conservative pointer-finding. Generational
collection and conservative pointer-finding are hard to use
together, because generational collection is usually
expressed in terms of copying objects, while conservative
pointer-finding precludes copying. We present a new
framework for defining garbage collectors. When applied
to generational collection, it generalizes the notion of
younger/older to a partial order. It can describe traditional
generational and conservative techniques, and lends itself to
combining different techniques in novel ways. We study in
particular two new garbage collectors inspired by this
framework. Both these collectors use conservative pointer-
finding. The first one is based on a rewrite of an existing
trace-and-sweep collector to use one level of generation.
The second one has a single parameter, which controls how
objects are partitioned into generations; the value of this
parameter can be changed dynamically with no overhead.
We have implemented both collectors and present
measurements of their performance in practice.

This appeared in the Conference Record of the 17th Annual ACM

Symposium on Principles of Programming Languages, January 17-19, 1990,

pp. 261-269.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a

fee and/or specific permission.

Copyright 1990 ACM.

I. Introduction

Garbage collectors fall into two general classes:
reference-counting and tracing. In this paper we consider
only tracing collectors. A tracing garbage collector works
by starting with a root set of memory objects, following the
pointers found there to other memory objects that should
be preserved, and so on recursively, until all objects
accessible from the roots have been found. Inaccessible
objects are garbage and can be reclaimed.

Garbage collection has a colorful past. It is considered
essential by some programming subcultures, such as those
from a Lisp heritage, and is considered superfluous or
dangerous by other subcultures, such as those from a
systems programming or real-time background. However,
there has been some use of garbage collection in systems
programming [Rovner85] [Weiser89] [Cardelli88], and even
real-time constraints are possible [Baker78] [Appel88]. In
general, interest in garbage collection is growing.

Garbage collection is almost never shared among
multiple language implementations. Instead, every
language with garbage collection does it differently, even
idiosyncratically, because collection usually depends on
implementation assumptions about the uses of pointers.
There is, however, a technique for identifying pointers that
is nearly language-independent. This technique, called
conservative pointer-finding, identifies a superset of the true
pointers, in effect by treating every word of a memory
object as if it might possibly contain a pointer [Boehm88].
Conservative pointer-finding precludes copying objects�
when an object is copied, every pointer to that object must
be updated to refer to the new location, but conservative
pointer-finding cannot distinguish pointers from integers,

